times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(s1(z), 0)
TIMES2(x, s1(y)) -> TIMES2(x, y)
TIMES2(x, s1(y)) -> PLUS2(times2(x, y), x)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(y, times2(s1(z), 0))
PLUS2(x, s1(y)) -> PLUS2(x, y)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(s1(z), 0)
TIMES2(x, s1(y)) -> TIMES2(x, y)
TIMES2(x, s1(y)) -> PLUS2(times2(x, y), x)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(y, times2(s1(z), 0))
PLUS2(x, s1(y)) -> PLUS2(x, y)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
PLUS2(x, s1(y)) -> PLUS2(x, y)
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(x, s1(y)) -> PLUS2(x, y)
POL( s1(x1) ) = 3x1 + 1
POL( PLUS2(x1, x2) ) = 2x1 + 2x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, s1(y)) -> TIMES2(x, y)
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
Used ordering: Polynomial Order [17,21] with Interpretation:
TIMES2(x, s1(y)) -> TIMES2(x, y)
POL( s1(x1) ) = x1 + 3
POL( 0 ) = 1
POL( TIMES2(x1, x2) ) = max{0, 3x1 + x2 - 3}
POL( times2(x1, x2) ) = 2x2
POL( plus2(x1, x2) ) = max{0, 2x1 + 2x2 - 2}
plus2(x, s1(y)) -> s1(plus2(x, y))
times2(x, 0) -> 0
plus2(x, 0) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TIMES2(x, s1(y)) -> TIMES2(x, y)
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES2(x, s1(y)) -> TIMES2(x, y)
POL( s1(x1) ) = 3x1 + 1
POL( TIMES2(x1, x2) ) = 2x1 + 2x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))